Вуколов Э.А., Ефимов А.В., Земсков В.Н., Поспелов А.С. Сборник задач по математике для втузов . Часть 4. Теория вероятностей. Математическая статистика ОНЛАЙН

Вуколов Э.А., Ефимов А.В., Земсков В.Н., Поспелов А.С. Сборник задач по математике для втузов. В 4-х ч. ч. 4. — М., Физматлит, 2004- 432 с.
Содержит следующие главы:Глава 18. Теория вероятностей. Глава 19. Математическая статистика
В начале каждого параграфа приводятся краткие теоретические сведения и разбирается несколько типичных примеров. Все задачи снабжены ответами, а наиболее сложные решениями. Решение части задач предполагает использование ЭВМ.
Фактически является переизданием известнейшего сборника под ред. Ефимова А.В. и Демидовича Б.П.


ОГЛАВЛЕНИЕ
Предисловие титульных редакторов ………………………………5
Глава 18. Теория вероятностей ………………………………..7
§1. Случайные события……………………………………….7
1. Понятие случайного события. 2. Алгебраические операции над событиями. 3. Аксиоматическое определение вероятности события. 4. Классическая вероятностная схема — схема урн. 5. Комбинаторный метод вычисления вероятностей в классической схеме. 6. Геометрические вероятности. 7. Условные вероятности. Независимость событий. 8. Вероятности сложных событий. 9. Формула полной вероятности. 10. Формула Байеса
§ 2. Случайные величины…………………. 56
1. Законы распределения и числовые характеристики случайных величин. 2. Распределения, связанные с повторными независимыми испытаниями. 3. Распределение Пуассона. 4. Нормальный закон распределения
§ 3. Случайные векторы………………….. 85
1. Законы распределения и числовые характеристики случайных векторов. 2. Нормальный закон на плоскости
§ 4. Функции случайных величин …………….. 106
1. Числовые характеристики функций случайных величин.
2. Характеристические функции случайных величин. 3. Законы распределения функций случайной величины. 4. Задача композиции
§5. Закон больших чисел и предельные теоремы теории вероятностей ………………………. 130
1. Закон больших чисел. 2. Предельные теоремы теории вероятностей. 3. Метод статистических испытаний
§ 6. Случайные функции (корреляционная теория)……. 143
1. Законы распределения и осредненные характеристики случайных функций. 2. Дифференцирование и интегрирование случайных функций. 3. Стационарные случайные функции.
4. Спектральное разложение стационарных случайных функций.
5. Преобразование стационарных случайных функций линейными динамическими системами с постоянными коэффициентами
Глава 19. Математическая статистика …………… 185
§ 1. Методы статистического описания результатов наблюдений …………………………… 185
1. Выборка и способы ее представления. 2. Числовые характеристики выборочного распределения. 3. Статистическое описание и выборочные характеристики двумерного случайного вектора.
§ 2. Статистическое оценивание характеристик распределения
генеральной совокупности по выборке………… 218
1. Точечные оценки и их свойства. Метод подстановки. 2. Метод максимального правдоподобия. 3. Метод моментов. 4. Распределения хи квадрат) Стьюдента и Фишера
§ 3. Интервальные оценки…………………. 237
1. Доверительные интервалы и доверительная вероятность. Доверительные интервалы для параметров нормально распределенной генеральной совокупности. 2. Доверительные интервалы для вероятности успеха в схеме Бернулли и параметра А распределения Пуассона. 3. Доверительные интервалы для коэффициента корреляции р
§4. Проверка статистических гипотез…………… 247
1. Основные понятия. Проверка гипотез о параметрах нормально распределенной генеральной совокупности. 2. Проверка гипотез о параметре р биномиального распределения. 3. Проверка гипотез о коэффициенте корреляции р. 4. Определение наилучшей критической области для проверки простых гипотез
§5. Одно факторный дисперсионный анализ……….. 279
§6. Критерий хи квадрат и его применение……………. 286
1. Проверка гипотезы о виде распределения генеральной совокупности. 2. Проверка гипотезы о независимости двух случайных величин. 3. Проверка гипотезы о равенстве параметров двух биномиальных распределений
§ 7. Элементы регрессионного анализа и метод наименьших
квадратов……………………….. 298
1. Линейная регрессия. 2. Линейная регрессионная модель общего вида (криволинейная регрессия). 3. Использование ортогональных систем функций. 4. Некоторые нелинейные задачи, сводящиеся к линейным моделям. 5. Множественная линейная регрессия (случай двух независимых переменных). 6 Вычисление и статистический анализ оценок параметров линейной модели при коррелированных и неравноточных наблюдениях
§ 8. Непараметрические методы математической статистики … 339
1. Основные понятия. Критерий знаков. 2. Критерий Вилкок-сона, Манна и Уитни. 3. Критерий для проверки гипотезы Яо о равенстве дисперсий двух генеральных совокупностей. 4. Критерий серий 5. Ранговая корреляция
Ответы и указания ………………………. 358
Приложения ………………………….. 411
Список литературы ………………………. 431

загрузка...
Поделиться ссылкой:
  • Добавить ВКонтакте заметку об этой странице
  • Мой Мир
  • Facebook
  • Twitter
  • LiveJournal
  • В закладки Google
  • Яндекс.Закладки
  • Сто закладок
  • Blogger
  • Блог Li.ру
  • Блог Я.ру
  • Одноклассники
  • RSS

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Наш сайт находят по фразам: