Сергеев И. Н. МАТЕМАТИКА. Задачи с ответами и решениями: Пособие для поступающих в вузы

Сергеев И. Н. МАТЕМАТИКА. Задачи с ответами и решениями: Пособие для поступающих в вузы. — М: КДУ, 2004. — 2-е изд., доп.— 360 с., ил.

Пособие представляет собой сборник задач по школьному курсу математики (включая алгебру, геометрию и начала анализа) и предназначено для подготовки к вступительному экзамену по математике в любой вуз.

загрузка...
Специальный порядок задач, разработанный опытным преподавателем, обеспечивает максимальный обучающий эффект. При последовательном изучении материала знания абитуриента развиваются по спирали: пройдя очередной ее виток, он оказывается подготовленным по всем разделам математики на существенно более высоком уровне, чем раньше.

Содержатся варианты письменных вступительных экзаменов по математике в МГУ им. М. В. Ломоносова, проводившихся в 2002-2003 гг., а также программа по математике для поступающих в МГУ.
Для старшеклассников и учителей, абитуриентов и репетиторов.
Оглавление
Введение………………………………………………………………………………………………………………….11
Часть I. Фундаментальные задачи
Глава 1. Первичные понятия, факты и приемы
1. Элементарные сведения………………………………………………………………….18
2. Тригонометрия……………………………………………………………………………………….22
3. Логарифмы………………………………………………………………………………………………..28
4. Системы и текстовые задачи……………………………………………………..32
5. Геометрия……………………………………………………………………………………………………42
Глава 2. Квадратные уравнения и неравенства
6. Квадратный трехчлен……………………………………………………………………..66
7. Уравнения и неравенства, квадратные относительно различных выражений………………………………….69
8. Дополнительные соображения………………………………………………….73
9. Простейшие приложения…………… ……………………………………..79
Часть II. Генеральные методы решения задач
Глава 3. Метод перебора
10. Расщепление уравнений и неравенств………………..87
11. Перебор случаев………………………………………… 93
12. Развитие метода интервалов………………………….104
13. Разложение на множители……………………………..109
14. Возведение уравнений и неравенств в квадрат…….115
15. Тригонометрические уравнения,
неравенства и системы…………………………………120
16. Перебор случаев в геометрии…………………………126
Глава 4. Метод равносильных преобразований
17. Сравнение чисел и выражений………………………..135
18. Некоторые особенности преобразований……………142
19. Различные системы и совокупности…………………146
20. Область значений и экстремумы функций………….154
21. Геометрические вопросы………………………………165
Глава 5. Метод обозначений
22. Замена переменных……………………………………..177
23. Переменные, параметры, функции…………………..186
24. Переменные в геометрии………………………………191
25. Графические иллюстрации…………………………….197
26. Зависимость графиков от параметра………………..205
27. Привлечение геометрии………………………………..215
28. Дополнительные построения в геометрии………….220
Глава 6. Метод следствий
29. Основные типы следствий……………………………..230
30. Получение и применение оценок………………………236
31. Специфика геометрии………………………………….241
32. Элементы логики………………………………………..253
33. Задачи с целыми числами……………………………..261
34. Проекции и сечения…………………………………….267
Приложение А. Программа по математике
I. Основные понятия………………………………..279
II. Содержание теоретической части устного экзамена……………………………………………280
III. Требования к поступающему…………………..282
Приложение Б. Дополнительные разделы
Б.1. Элементы комбинаторики……………………….284
Б.2. Задачи, использующие предел………………….284
Б.З. Производная……………………………………….284
Б.4. Исследование функций с помощью
производной……………………………………….285
Б.5. Касательная……………………………………….287
Б.6. Интеграл…………………………………………..288
Б.7. Нахождение площадей с помощью интеграла.. 288
Б.8. Разные задачи на применение производной
и интеграла………………………………………..289
Приложение В. Варианты заданий 2002 г.
Приложение Г. Варианты заданий 2003 г.
Ответы………………………………………………………….325

загрузка...
Поделиться ссылкой:
  • Добавить ВКонтакте заметку об этой странице
  • Мой Мир
  • Facebook
  • Twitter
  • LiveJournal
  • В закладки Google
  • Яндекс.Закладки
  • Сто закладок
  • Blogger
  • Блог Li.ру
  • Блог Я.ру
  • Одноклассники
  • RSS

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Наш сайт находят по фразам: